

		X1-Hybrid-3.7-D-C	X1-Hybrid-4.6-D-C	X1-Hybrid-5.0-D-C
	X1-Hybrid-3.0-D-C	X1-Hybrid-3.7-D-E	X1-Hybrid-4.6-D-E	X1-Hybrid-5.0-D-E
Micro-generator	X1-Hybrid-3.0-D-E	X1-Hybrid-3.7-N-C	X1-Hybrid-4.6-N-C	X1-Hybrid-5.0-N-C
Type reference	X1-Hybrid-3.0-N-C	X1-Hybrid-3.7-N-E	X1-Hybrid-4.6-N-E	X1-Hybrid-5.0-N-E
	X1-Hybrid-3.0-N-E	X1-Fit-3.7C,	X1-Fit-4.6C,	X1-Fit-5.0C,
		X1-Fit-3.7E	X1-Fit-4.6E	X1-Fit-5.0E
Maximum				
continuous	3000VA	3680VA	3680VA	3680VA
rating				
Manufacturer	SolaX Power Netwo	ork Technology (Zhe	jiang) Co. , Ltd.	
Address	No.288 Shizhu Road, Tonglu Economic Development Zone, Tonglu City, Zhejiang Province 310000, P. R. CHINA.			
Tel	+86(0571)-56260011			
Fax	+86(0571)-56075753			
Email	info@soalxpower.com			
Web site	www.solaxpower.com			
standard	Technical regulation 3.3.1 for electrical energy storage facilities			
Signed	Guo Huawei			
On behalf of	SolaX Power Network Technology (Zhejiang) Co. , Ltd.			
the generating un	it manufacturer/supp	lier declaration.		
I certify on behalf	of the company nam	ed above as a manu	facturer/supplier of g	enerating units, that
all products manu	ufactured/supplied by	the company with th	ne above generating	unit Type reference
number will be	manufactured and te	ested to ensure tha	t they perform as s	stated in this Type
Verification Test	Report, prior to ship	ment to site and that	at no site modificatio	ons are required to
ensure that the product meets all the requirements of 'standard' as above.				

1、Voltage and frequency protection

Protection. Frequency tests					Ρ
Function	Default setting Trip test				
	Frequency	Disconnection time limit	Frequency	Disco t	nnection ime
U/F stage 1	47.5Hz	0.2s	47.50Hz	0.	181s
O/F stage 1	51.5Hz	0.2s	51.52Hz	0.	113s

Protection. Under Voltage					Р
Parameter	Voltage	Disconnection time limit	Voltage	Disconne li	ection time mit
Protection limit	0.85Un	50s	0.80Un	0	.2s
Actual Setting	195.5V	50s	184.0V	0	.2s
Trip test	Voltage	Disconnection time	Voltage	Disconne	ection time
L1	195.5V	49.62s	184.0V	0.1	176s

Protection.Over Voltage					Р
Parameter	Voltage	Disconnection time limit	Voltage	Disconne lin	ction time nit
Protection limit	1.10Un	60s	1.15Un	0.	2s
Actual Setting	253.0V	60s	264.5V	0.1	2s
Trip test	Voltage	Disconnection time	Voltage	Disconne	ction time
L1	253.1V	59.82s	264.6V	0.1	50s

2、Tolerance of frequency deviations

a) Frequency Change

Rate of change of frequency (ROCOF) immunity					Р
	Frequency		Change	Result	Poquiromont
	Begin	End	Change	(disconnect or not)	Requirement
a)	49.0 Hz	51.0 Hz	+ 2Hz/s	Stay connected	Stay connected
b)	51.0 Hz	49.0 Hz	- 2Hz/s	Stay connected	Stay connected

b) Power response to under-frequency

Active power at under-frequency					Р
Test sequence	Voltage (V)	Current (A)	Frequency (Hz)	Active Power (W)	Primary source
Test a)	230.9	15.9	49.99	3680.0	PV generator
Test b)	230.8	15.9	49.50	3675.1	PV generator
Test c)	231.0	15.9	49.00	3678.7	PV generator
Test d)	230.8	15.9	48.50	3674.5	PV generator
Test e)	230.8	15.9	48.00	3674.4	PV generator
Test f)	230.8	15.9	47.50	3674.3	PV generator
Supplementary information: During the test, under-frequency protection is disabled.					

c) Transient voltage phase jumps

Transient voltage p	Р		
	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.5 Hz	+20 degrees	No trip
Negative Vector Shift	50.5 Hz	-20 degrees	No trip

3. Start-up and reconnection

a) Eastern Denmark

Starting to generate electrical power Automatic reconnection after tripping				Р	
	Min.voltage	for connected to grid	195.5V		
	Max.voltage	e for connected to grid		253.0 V	
Setting values	Min.Freque	ncy for connected to grid		49.9Hz	
	Max.Freque	ency for connected to grid		50.1Hz	
	Observatior	n time (180s)		180s	
Test:					
		Voltage c	onditions		
a) start up for vol	tage range	<85%U _n for twice of setting observation time	>110%U _l obs	n for twice of setting ervation time	
Connecti	on:	No connection	No	connection	
Limit		No connection allowed			
b) in voltage rang	je at start up	□≥85%U _n within twice of setting observation time	□≤110%U _n within twice of setting observation time		
Reconnection time	e[s]	187s	189s		
Limit:		Reconnection after setting observation time(180s)			
Gradient		P 1 10.0 V 2 500 V 200 s	2.50k/	61.3 5 819 5 −10.8 A A757 5 A120 A A757 5 A120 A (17 9月 2020) 11:35:45	
c) In voltage range	e after	\geq 85%U _n for twice of setting	≤110%U	n for twice of setting	
Percennection time			ODS		
	ຍ[8]	2005		1045	
Limit:	Reconnection after setting obse	ervation tim	ne(≥180s)		

Gradient				
	3 1 10.0 V 2 500 V 100 s	5.00K次/秒 5.00K次/秒 5M点 -44.8 V 10:34:49		
	Frequency	conditions		
d) start up for frequency range	<49.9Hz for twice of setting observation time	>50.1Hz for twice osetting observation time		
Connection	No connection	No connection		
Limit	No connection allowed			
e) in frequency range at start up	≥49.9Hz witnin twice of setting observation time	<50.1Hz witnin twice of setting observation time		
Reconnection time[s]	192s	195s		
Limit:	Reconnection after setting observation time(≥180s)			
Gradient	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	● 96.0 s 109 A ● 97.7 s -10.8 A A781 s A120 A ■ 109 A ● 87.7 s -10.8 A A781 s A120 A ■ 109		
f) In frequency range after frequency failture	□49.9Hz for twice of setting observation time	□50.1Hz for twice of setting observation time		
Reconnection time[s]	192s	195s		
Limit:	Reconnection after setting observation time(≥180s)			

b) Western Denmark

Starting to generate electrical power Automatic reconnection after tripping				Р
	Min.voltage	for connected to grid		195.5V
	Max.voltage	e for connected to grid		253.0 V
Setting values	Min.Freque	ncy for connected to grid		49.8Hz
	Max.Freque	ency for connected to grid		50.2Hz
	Observatior	n time (180s)		180s
Test:				
Voltage conditions				
a) start up for voltage range		<85%U _n for twice of setting observation time	>110%Un for twice of settir observation time	
Connection:		No connection	No connection	
Limit		No connection allowed		
b) in voltage range at start up		□≥85%U _N within twice of setting observation time	□≤110%U _n within twice of setting observation time	
Reconnection time[s]		187s	189s	
Limit:		Reconnection after setting obs	ervation tim	e(180s)

Gradient	1 20.0 V 200 s	1015 109A 1015 109A 105 109A 105 109A 105 109A 105 109A 105 109A 105 109A 1059135
c) In voltage range after	≥85%Un for twice of setting	\leq 110%U _n for twice of setting
voltage failture	observation time	observation time
Reconnection time[s]	184s	187s
Limit:	Reconnection after setting obs	ervation time(≥180s)
Gradient	D D 20.0 V 200 V 200 S	● 53.3 s ● 837 5 ● 109 A ● 837 5 ● 108 A A784 s A120 A ● 4120 A ● 4120 A ● 108 A ●
	Frequency	conditions
d) start up for frequency range	<49.8Hz for twice of setting observation time	>50.2Hz for twice of setting observation time
Connection	No connection	No connection
Limit	No connect	ion allowed
e) in frequency range at start up	≥49.8Hz witnin twice of setting observation time	≤50.2Hz witnin twice of setting observation time
Reconnection time[s]	184s	187s
Limit:	Reconnection after setting	g observation time(≥180s)

Gradient	1e k 1≇11 2 2 2 2 2 2 2 2 2 0 V 2 2 0 V 2 2 0 V 2 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 0 V 2 0 V V V V V V V V V V V V V	● 107 5 109 A ● 853 5 - 10.8 A A776 5 A 120 A ■ 107 5 109 A ● 107 5 109 A ■ 108 A A776 5 A 120 A ■ 108 A ■ 1
f) In frequency range after	≥49.8Hz for twice of setting	≤50.2Hz for twice of setting
Reconnection time[s]	184s	184s
Limit:	Reconnection after setting obse	ervation time(≥180s)
Gradient	Tek ⊭⊥ 2 2 2 2 2 2 2 2 2 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	

4. power response to overfrequency

a) Eastern Denmark

Power response to overfrequency													P)											
				Para	ame	ter						R	lan	ge						De	efa	ult	set	ting	
Setting valu	ies	Т	hresh	old	freq	uen	cy f⊦	RO		5	60.2	2 Hz	z to	50	.5	Hz					5	0.5	Hz	2	
				D	roop)					2	2 %	to	12	%							4 %	6		
Test:																									
2-min	a) 50.00⊦	z b) 50.50Hz c) 50.55		55H	Ηz	z d) 50.70Hz			e) 50.95Hz		f) 50.70Hz		łz												
mean value	g)	50.8	50.55Hz H) 50.50Hz					i) 50.00Hz																	
Graph of M	Graph of Measurement a) to i) : Active power output>80%P _{Emax}																								
4000 3500 2500 2000 1500 500 0 1000 500 0 1000 500 10000 1000000	19:11:20 19:12:00 19:12:39 19:13:18	19:14:36 19:14:36	19:15:16 19:15:55	19:16:34	19:17:52 (19:17:52	 (19:18:32 19-10-11 	19:19:50	19:20:29	19:21:08	D 19:21:48	T19:22:2/	19:23:45	19:24:24	19:25:04	19:25:43	19:26:22	19:27:01	19:27:40	19:28:20	19:28:59		51.2 51 50.8 50.6 50.4 50.2 50 49.8 49.6 49.4			

b) Western Denmark

Power response to overfrequency											Р									
					Р	aram	nete	r					F	Ran	ge			Defaul	t s	etting
Setting va	lues		-	Thre	esho	ld fre	que	ency	′ f _{RC})		50.2	: H	z to	50.	5 Hz		50.2	2	Hz
						Droo	эр					2	2 %	o to	12 🤉	%		5	%)
Test:																				
2-min	2) 5		J-7	ь)	50.2	~~~~		50 ⁻		-	d) (51 A	പ) 7∩⊔-	f)	50 2547		
mean value		0.001	IZ	0)	50.2	JUL	0)	50.7	101	12	u) t)1.4		2 6	;) 50	0.70112	, יי	50.25112	ç	J) 50.00H2
Graph of I	Measur	emer	nt a)	to	g) : /	Active	e po	wer	r ou	itpu	t>8	0%F	> _{En}	nax						
4000																		52		
3500													-	_				51 5		
3000				L														51.5		
2500							_											51		
2000				ſ			_											50.5		
1500			_	-			•											50		
1000																		- 50		
500																		49.5		
0																		49		
9:43):13):43 1:14	2:14	2:44 3:14	3:45	l:15 l:45	5:15 5:45	5:16	5:46 7:16	:46	3:17	3:47	:47):17):48 -18	1:48	2:18 2:48 3:19	3:49			
19:49	19:50 19:50 19:51	19:51 19:52	19:52 19:53	19:53	19:54 19:54	19:55	19:56	19:56 19:57	19:57	19:58	19:58 10-50	19:59	20:00	20:00	20:01	20:02 20:02 20:03	20:03			
						D2/1					112/1	1-)								
							vvj			ΝLQ	05(1	12)								

Ρ

5、Reactive power control

Reactive	nowor	control
Reactive	power	CONTROL

Test 1: Power Factor control

Cos φ set=0.9 (inductive)										
Power - Bin (P/Sn)	Active power [W]	Apparent power [VA]	Reactive power [Var]	Power factor [cosφ]	ΔCosφ	LIMIT Δcosφ_max				
10%	337.4	374.5	-163.0	0.9006	0.0006	±0.01				
20%	731.2	815.0	-360.0	0.8972	-0.0028	±0.01				
30%	1107.4	1228.6	-532.5	0.9012	0.0012	±0.01				
40%	1476.6	1648.4	-732.7	0.8958	-0.0042	±0.01				
50%	1845.6	2054.1	-901.6	0.8985	-0.0015	±0.01				
60%	2211.9	2457.5	-1071.2	0.9000	0.0000	±0.01				
70%	2575.9	2860.4	-1243.7	0.9005	0.0005	±0.01				
80%	2943.1	3266.5	-1417.1	0.9010	0.0010	±0.01				
90%	3308.7	3670.7	-1589.2	0.9014	0.0014	±0.01				
100%	3315.8	3677.7	-1591.0	0.9016	0.0016	±0.01				
Cos φ set=0.9 (capacitive)										
Power - Bin	Active power	Apparent	Reactive	Power factor		LIMIT				
(P/Sn)	EL A / I				ΔCosΦ					
(1, , e.i.)	[vv]	power [VA]	power [Var]	[cosφ]		Δcosφ_max				
10%	[vv] 369.2	power [VA] 410.9	power [Var] 180.4	[cosφ] 0.8985	-0.0015	Δcosφ_max ±0.01				
10% 20%	269.2 740.3	power [VA] 410.9 823.4	power [Var] 180.4 360.3	[cosφ] 0.8985 0.8992	-0.0015	Δcosφ_max ±0.01 ±0.01				
10% 20% 30%	[vv] 369.2 740.3 1106.5	power [VA] 410.9 823.4 1239.8	power [Var] 180.4 360.3 559.3	[cosφ] 0.8985 0.8992 0.8924	-0.0015 -0.0008 -0.0076	Δcosφ_max ±0.01 ±0.01 ±0.01				
10% 20% 30% 40%	[VV] 369.2 740.3 1106.5 1471.4	power [VA] 410.9 823.4 1239.8 1639.0	power [Var] 180.4 360.3 559.3 722.0	[cosφ] 0.8985 0.8992 0.8924 0.8978	-0.0015 -0.0008 -0.0076 -0.0022	Δcosφ_max ±0.01 ±0.01 ±0.01 ±0.01				
10% 20% 30% 40% 50%	[vv] 369.2 740.3 1106.5 1471.4 1845.7	power [VA] 410.9 823.4 1239.8 1639.0 2049.2	power [Var] 180.4 360.3 559.3 722.0 890.3	[cosφ] 0.8985 0.8992 0.8924 0.8978 0.9007	-0.0015 -0.0008 -0.0076 -0.0022 0.0007	Δcosφ_max ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01				
10% 20% 30% 40% 50% 60%	[vv] 369.2 740.3 1106.5 1471.4 1845.7 2215.5	power [VA] 410.9 823.4 1239.8 1639.0 2049.2 2454.6	power [Var] 180.4 360.3 559.3 722.0 890.3 1056.7	[cosφ] 0.8985 0.8992 0.8924 0.8978 0.9007 0.9026	-0.0015 -0.0008 -0.0076 -0.0022 0.0007 0.0026	$ \Delta \cos \varphi _{max} $ ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01				
10% 20% 30% 40% 50% 60% 70%	[vv] 369.2 740.3 1106.5 1471.4 1845.7 2215.5 2575.7	power [VA] 410.9 823.4 1239.8 1639.0 2049.2 2454.6 2849.6	power [Var] 180.4 360.3 559.3 722.0 890.3 1056.7 1219.0	[cosφ] 0.8985 0.8992 0.8924 0.8978 0.9007 0.9026 0.9039	-0.0015 -0.0008 -0.0076 -0.0022 0.0007 0.0026 0.0039	$ \Delta \cos \varphi max $ ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01				
10% 20% 30% 40% 50% 60% 70% 80%	[vv] 369.2 740.3 1106.5 1471.4 1845.7 2215.5 2575.7 2943.1	power [VA] 410.9 823.4 1239.8 1639.0 2049.2 2454.6 2849.6 3251.9	power [Var] 180.4 360.3 559.3 722.0 890.3 1056.7 1219.0 1383.4	[cosφ] 0.8985 0.8992 0.8924 0.8978 0.9007 0.9007 0.9026 0.9039 0.9050	-0.0015 -0.0008 -0.0076 -0.0022 0.0007 0.0026 0.0039 0.0050	$ \Delta \cos \varphi_max $ ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01				
10% 20% 30% 40% 50% 60% 70% 80% 90%	[vv] 369.2 740.3 1106.5 1471.4 1845.7 2215.5 2575.7 2943.1 3296.6	power [VA] 410.9 823.4 1239.8 1639.0 2049.2 2454.6 2849.6 3251.9 3634.5	power [Var] 180.4 360.3 559.3 722.0 890.3 1056.7 1219.0 1383.4 1530.1	[cosφ] 0.8985 0.8992 0.8924 0.8978 0.9007 0.9026 0.9039 0.9050 0.9070	-0.0015 -0.0008 -0.0076 -0.0022 0.0007 0.0026 0.0039 0.0050 0.0070	$ \Delta \cos \phi_max $ ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01				
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%	[vv] 369.2 740.3 1106.5 1471.4 1845.7 2215.5 2575.7 2943.1 3296.6 3306.9	power [VA] 410.9 823.4 1239.8 1639.0 2049.2 2454.6 2849.6 3251.9 3634.5 3644.7	power [Var] 180.4 360.3 559.3 722.0 890.3 1056.7 1219.0 1383.4 1530.1 1532.1	[cosφ] 0.8985 0.8992 0.8924 0.8978 0.9007 0.9026 0.9039 0.9050 0.9050 0.9070 0.9074	-0.0015 -0.0008 -0.0076 -0.0022 0.0007 0.0026 0.0039 0.0050 0.0050 0.0070 0.0074	$ \Delta \cos \phi_max $ ±0.01				
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%	[vv] 369.2 740.3 1106.5 1471.4 1845.7 2215.5 2575.7 2943.1 3296.6 3306.9	power [VA] 410.9 823.4 1239.8 1639.0 2049.2 2454.6 2849.6 3251.9 3634.5 3644.7	power [Var] 180.4 360.3 5559.3 722.0 890.3 1056.7 1219.0 1383.4 1530.1 1532.1 Cos φ set=1.0	[cosφ] 0.8985 0.8992 0.8924 0.8978 0.9007 0.9026 0.9039 0.9050 0.9050 0.9070 0.9074	-0.0015 -0.0008 -0.0076 -0.0022 0.0007 0.0026 0.0039 0.0050 0.0070 0.0074	$ \Delta \cos \varphi_max $ ±0.01				

				Manufacture Decl	aration for Denmark	<u> </u>
10%	366.4	367.5	-28.0	0.9971	-0.0029	±0.01
20%	735.9	736.3	-25.0	0.9994	-0.0006	±0.01
30%	1101.7	1102.0	-25.0	0.9997	-0.0003	±0.01
40%	1474.2	1484.8	-176.8	0.9929	-0.0071	±0.01
50%	1844.6	1853.2	-178.0	0.9954	-0.0046	±0.01
60%	2208.1	2215.4	-179.2	0.9967	-0.0033	±0.01
70%	2572.4	2578.7	-179.5	0.9976	-0.0024	±0.01
80%	2958.5	2965.7	-207.0	0.9976	-0.0024	±0.01
90%	3316.8	3322.9	-200.3	0.9982	-0.0018	±0.01
100%	3679.9	3685.5	-200.5	0.9985	-0.0015	±0.01
Tost 2: Automa	tic Power Ea	eter control				

Test 2: Automatic Power Factor control

Lock-in: 1.05Vn (Vn and 1.1 Vn with steps of 0.01)

Lock-out: 1.00Vn (0.9 Vn and Vn with steps of 0.01)

P/Pn[%] setpoint	P[W]	P/Pn [%]	Vout/Vn	Q[Var]	Cos φ measured	Cos φ Set-point	ΔCosφ	LIMIT Δcosφ_max
10	416.5	11.3%	1.02	-27.0	0.9979	1.00	-0.0021	±0.01
20	783.0	21.3%	1.02	-24.0	0.9995	1.00	-0.0005	±0.01
30	1149.6	31.2%	1.02	-23.3	0.9998	1.00	-0.0002	±0.01
50	1878.7	51.1%	1.02	-26.0	0.9999	1.00	-0.0001	±0.01
60	2242.4	60.9%	1.02	-30.0	0.9999	1.00	-0.0001	±0.01
60	2244.3	61.0%	1.06	-454.0	0.9801	0.98	0.0001	±0.01
75	2787.6	75.8%	1.06	-898.7	0.9518	0.95	0.0018	±0.01
90	3328.4	90.4%	1.06	-1388.8	0.9229	0.92	0.0029	±0.01
100	3675.9	99.9%	0.98	-62.8	0.9999	1.00	-0.0001	±0.01

Response time measurement: Standard characteristic curve for $\cos \phi$ (P)

Power step under applied cosφ(P)-curve setted through control panel	Measured cosφ	Active Power [W]	Apparent Power [VA]	Reactive Power [Var]	Response time to new reactive power set value [s]	Settling time limit [s]
20% P _{max} , cosφ=1.0	0.9997	779.5	779.6	-20.1		
50% P _{max} , cosφ=1.0	0.9999	1875.2	1875.4	-26.3		
90% P _{max} , cosφ=0.92	0.9229	3328.7	3606.7	-1388.7	3.4	10

90% P _{max} , cosφ	=0.92	0.9	229	3328	3.6	3606	.6	-138	8.6			
50% P _{max} , cosφ	=1.0	0.9	999	1864	1.7	1865	.0	-25.	.6		2.2	10
20% P _{max} , cosφ	=1.0	0.9	997	776	.6	777.	1	-20.	.1			
Test 3: Q con	trol					<u> </u>						
				Q=0	Cmax	(Q _{cmax} =	=43.6	6% Sn)				
Power-Bin (P/Sn)	Activ power	/e [W]	App: powe	arent r [VA]	Rea Po [\	active ower /Ar]	Re Pov	active wer/Sn	Re Pov se	active ver/Sn tpoint	Deviation [%]	ΔQ/Sn limit [%]
10%	403.	.5	165	58.0	16	608.2	4:	3.7%	4:	3.6%	0.1%	+/-2%
20%	768.	.7	178	34.0	16	510.0	4:	3.7%	4:	3.6%	0.1%	+/-2%
30%	1133	8.8	196	8.5	16	609.0	4:	3.7%	4:	3.6%	0.1%	+/-2%
40%	1499).7	219	98.7	16	607.8	4	3.7%	4:	3.6%	0.1%	+/-2%
50%	1866	5.1	246	61.7	16	05.2	4:	3.6%	4:	3.6%	0.0%	+/-2%
60%	2228	8.6	274	13.7	16	600.5	43	3.5%	4:	3.6%	-0.1%	+/-2%
70%	2589).7	304	1.1	15	94.1	4:	3.3%	4:	3.6%	-0.3%	+/-2%
80%	2950	.8	335	50.7	15	87.4	4:	3.1%	4:	3.6%	-0.5%	+/-2%
90%	3275	i.6	363	86.7	15	6.08	42	2.9%	4:	3.6%	-0.7%	+/-2%
100%	3275	5.4	363	36.5	15	80.0	42	2.9%	4:	3.6%	-0.7%	+/-2%
				Q= Q	_max ((Q _{Lmax} =	-43.	6% Sn)				
Power-Bin (P/Sn)	Activ power	/e [W]	App: powe	arent r [VA]	Rea Po [\	active ower /Ar]	Re Pov	active wer/Sn	Rea Pov set	active ver/Sn point	Deviation [%]	ΔQ/Sn limit [%]
10%	433.	.8	165	52.9	-15	595.0	-4	3.3%	-4:	3.6%	-0.3%	+/-2%
20%	795.	.5	178	32.9	-15	596.0	-4	3.4%	-43	3.6%	-0.2%	+/-2%
30%	1159	9.6	197	74.0	-15	598.0	-4	3.4%	-4:	3.6%	-0.2%	+/-2%
40%	1525	i.8	221	1.7	-16	601.0	-4	3.5%	-43	3.6%	-0.1%	+/-2%
50%	1892	2.5	248	80.8	-16	604.2	-4	3.6%	-43	3.6%	0.0%	+/-2%
60%	2249	9.9	276	63.6	-16	604.3	-4	3.6%	-43	3.6%	0.0%	+/-2%
70%	2612	2.3	306	67.8	-16	608.9	-4	3.7%	-43	3.6%	0.1%	+/-2%
80%	2972	2.7	338	32.2	-16	613.3	-4	3.8%	-4:	3.6%	0.2%	+/-2%
90%	3303	8.0	367	7.8	-16	617.9	-4	4.0%	-4:	3.6%	0.4%	+/-2%
100%	3303	9.3	367	78.1	-16	618.0	-4	4.0%	-4:	3.6%	0.4%	+/-2%

Ρ

6、Control functions

Control functions

Test 1: Absolute power constraint

Pnl is the designation for rated power supplied by an energy storage facility.

Pno denotes the nominal power absorbed by an energy storage facility.

Set-point P/ Pnl [%]	Set-point P [W]	Measured P [W]	Accuracy [%]	Required accuracy of Set-point P [%]
10%	368	363.8	-1.14%	±5%
20%	736	742.9	0.94%	±5%
30%	1104	1124.9	1.89%	±5%
40%	1472	1506.2	2.32%	±5%
50%	1840	1881.0	2.23%	±5%
60%	2208	2259.0	2.31%	±5%
70%	2576	2634.1	2.26%	±5%
80%	2944	3006.9	2.14%	±5%
90%	3312	3377.6	1.98%	±5%
100%	3680	3692.3	0.33%	±5%

Note:

Accuracy of the control performed and of the set point must not deviate by more than $\pm 5\%$ of the set point value or $\pm 0.5\%$ of rated power, depending which yields the highest tolerance.

Set-point P/ Pno [%]	Set-point P [W]	Measured P [W]	Accuracy [%]	Required accuracy of Set-point P [%]
10%	-368	-374.3	1.71%	±5%
20%	-736	-730.3	-0.77%	±5%
30%	-1104	-1087.7	-1.48%	±5%
40%	-1472	-1445.6	-1.79%	±5%
50%	-1840	-1803.3	-1.99%	±5%
60%	-2208	-2163.5	-2.02%	±5%
70%	-2576	-2522.6	-2.07%	±5%
80%	-2944	-2886.5	-1.95%	±5%
90%	-3312	-3248.7	-1.91%	±5%
100%	-3680	-3609.9	-1.90%	±5%

Test 2: Ramp rate constraint function

•					
Test sequence	Measured stable active power of start point P[W]	Measured stable active power of end point P[W]	Time elapsed [s] (from start to time for output power last entered 5% tolerance band around the set-point)	Power gradient [%P₀/min]	Ramp rate limit[%P₀/min]
100% P _{nl} to 5% P _{nl}	3691.4	177.1	504	11.4	≥1% and ≤20%
5% P _{nl} to 100% P _{nl}	181.6	3692.3	572	10.0	≥1% and ≤20%
100% Pno to 5% Pno	-3609.1	-185.4	456	12.2	≥1% and ≤20%
5% P _{no} to 100% P _{no}	-189.1	-3611.7	520	10.7	≥1% and ≤20%